Lightweight Workload Fingerprinting Localization Using Affinity Propagation Clustering and Gaussian Process Regression
نویسندگان
چکیده
منابع مشابه
Gaussian Process Quantile Regression using Expectation Propagation
Direct quantile regression involves estimating a given quantile of a response variable as a function of input variables. We present a new framework for direct quantile regression where a Gaussian process model is learned, minimising the expected tilted loss function. The integration required in learning is not analytically tractable so to speed up the learning we employ the Expectation Propagat...
متن کاملGaussian Process Regression with Censored Data Using Expectation Propagation
Censoring is a typical problem of data gathering and recording. Specialized techniques are needed to deal with censored (regression) data. Gaussian processes are Bayesian nonparametric models that provide state-of-the-art performance in regression tasks. In this paper we propose an extension of Gaussian process regression models to data in which some observations are subject to censoring. Since...
متن کاملSubspace clustering using affinity propagation
This paper proposes a subspace clustering algorithm by introducing attribute weights in the affinity propagation algorithm. A new step is introduced to the affinity propagation process to iteratively update the attribute weights based on the current partition of the data. The relative magnitude of the attribute weights can be used to identify the subspaces in which clusters are embedded. Experi...
متن کاملEfficient Multiscale Gaussian Process Regression using Hierarchical Clustering
Standard Gaussian Process (GP) regression, a powerful machine learning tool, is computationally expensive when it is applied to large datasets, and potentially inaccurate when data points are sparsely distributed in a highdimensional feature space. To address these challenges, a new multiscale, sparsified GP algorithm is formulated, with the goal of application to large scientific computing dat...
متن کاملEstimation of Clustering Parameters Using Gaussian Process Regression
We propose a method for estimating the clustering parameters in a Neyman-Scott Poisson process using Gaussian process regression. It is assumed that the underlying process has been observed within a number of quadrats, and from this sparse information the distribution is modelled as a Gaussian process. The clustering parameters are then estimated numerically by fitting to the covariance structu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2018
ISSN: 1424-8220
DOI: 10.3390/s18124267